A Convenient In Vivo Model Using Small Interfering RNA Silencing to Rapidly Assess Skeletal Gene Function
نویسندگان
چکیده
It is difficult to study bone in vitro because it contains various cell types that engage in cross-talk. Bone biologically links various organs, and it has thus become increasingly evident that skeletal physiology must be studied in an integrative manner in an intact animal. We developed a model using local intraosseous small interfering RNA (siRNA) injection to rapidly assess the effects of a target gene on the local skeletal environment. In this model, 160-g male Sprague-Dawley rats were treated for 1-2 weeks. The left tibia received intraosseous injection of a parathyroid hormone 1 receptor (Pth1r) or insulin-like growth factor 1 receptor (Igf-1r) siRNA transfection complex loaded in poloxamer 407 hydrogel, and the right tibia received the same volume of control siRNA. All the tibias received an intraosseous injection of recombinant human parathyroid hormone (1-34) (rhPTH (1-34)) or insulin-like growth factor-1 (IGF-1). Calcein green and alizarin red were injected 6 and 2 days before euthanasia, respectively. IGF-1R and PTH1R expression levels were detected via RT-PCR assays and immunohistochemistry. Bone mineral density (BMD), microstructure, mineral apposition rates (MARs), and strength were determined by dual-energy X-ray absorptiometry, micro-CT, histology and biomechanical tests. The RT-PCR and immunohistochemistry results revealed that IGF-1R and PTH1R expression levels were dramatically diminished in the siRNA-treated left tibias compared to the right tibias (both p<0.05). Using poloxamer 407 hydrogel as a controlled-release system prolonged the silencing effect of a single dose of siRNA; the mRNA expression levels of IGF-1R were lower at two weeks than at one week (p<0.01). The BMD, bone microstructure parameters, MAR and bone strength were significantly decreased in the left tibias compared to the right tibias (all p<0.05). This simple and convenient local intraosseous siRNA injection model achieved gene silencing with very small quantities of siRNA over a short treatment period (≤7 days).
منابع مشابه
مهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19
Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells. Ai...
متن کاملSmall interfering RNA; principles, applications and challenges--
Gene silencing using RNAi (RNA interference), has recently been used as a successful laboratory technique in determining the function and control of gene expression and provides a wide range of applications in molecular biology and gene therapy. RNAi is a method of suppressing gene expression. In this direction, a single-stranded RNA molecule of about 21–23 nucleotides, called siRNA (small inte...
متن کاملOptimal Electroporation Condition for Small Interfering RNA Transfection into MDA-MB-468 Cell Line
Background: Electroporation is a valuable tool for small interfering RNA (siRNA) delivery into cells because it efficiently transforms a wide variety of cell types. Since electroporation condition for each cell type must be determined experimentally, this study presents an optimal electroporation strategy to reproducibly and efficiently transfect MDA-MB 468 human breast cancer cell with siRNA. ...
متن کاملDesign, simplified cloning, and in-silico analysis of multisite small interfering RNA-targeting cassettes
Multiple gene silencing is being required to target and tangle metabolic pathways in eukaryotes and researchers have to develop a subtle method for construction of RNA interference (RNAi) cassettes. Although, several vectors have been developed due to different screening and cloning strategies but still some potential limitations remain to be dissolved. Here, we worked out a simple cloning stra...
متن کاملBcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia
Background: RNA interference (RNAi) is the mechanism of gene silencing-mediated messenger RNA degradation by small interference RNA (siRNA), which becomes a powerful tool for in vivo research, especially in the areas of cancer. In this research, the potential use of an expression vector as a specific siRNA producing tool for silencing of Bcr-abl in K562 cell line has been investigated. Methods:...
متن کامل